

Synthesis and biological evaluation of a series of tangeretin-derived chalcones

Jérôme Quintin^a, Julie Desrivot^a, Sylviane Thoret^b, Patrick Le Menez^c, Thierry Cresteil^b, Guy Lewin^{a,*}

^a Laboratoire de Pharmacognosie (Univ. Paris-Sud 11, BIOCIS, UMR-8076 CNRS), Faculté de Pharmacie, av. J.B. Clément, 92296 Châtenay-Malabry Cedex, France

^b ICSN-CNRS-UPR 2301, 91190 Gif-sur-Yvette, France

^c Laboratoire de Chimie Thérapeutique (Univ. Paris-Sud 11, BIOCIS, UMR-8076 CNRS), Faculté de Pharmacie, av. J.B. Clément, 92296 Châtenay-Malabry Cedex, France

ARTICLE INFO

Article history:

Received 23 September 2008

Revised 27 October 2008

Accepted 28 October 2008

Available online 5 November 2008

Keywords:

Chalcones

Tangeretin

Antiproliferative activity

Tubulin

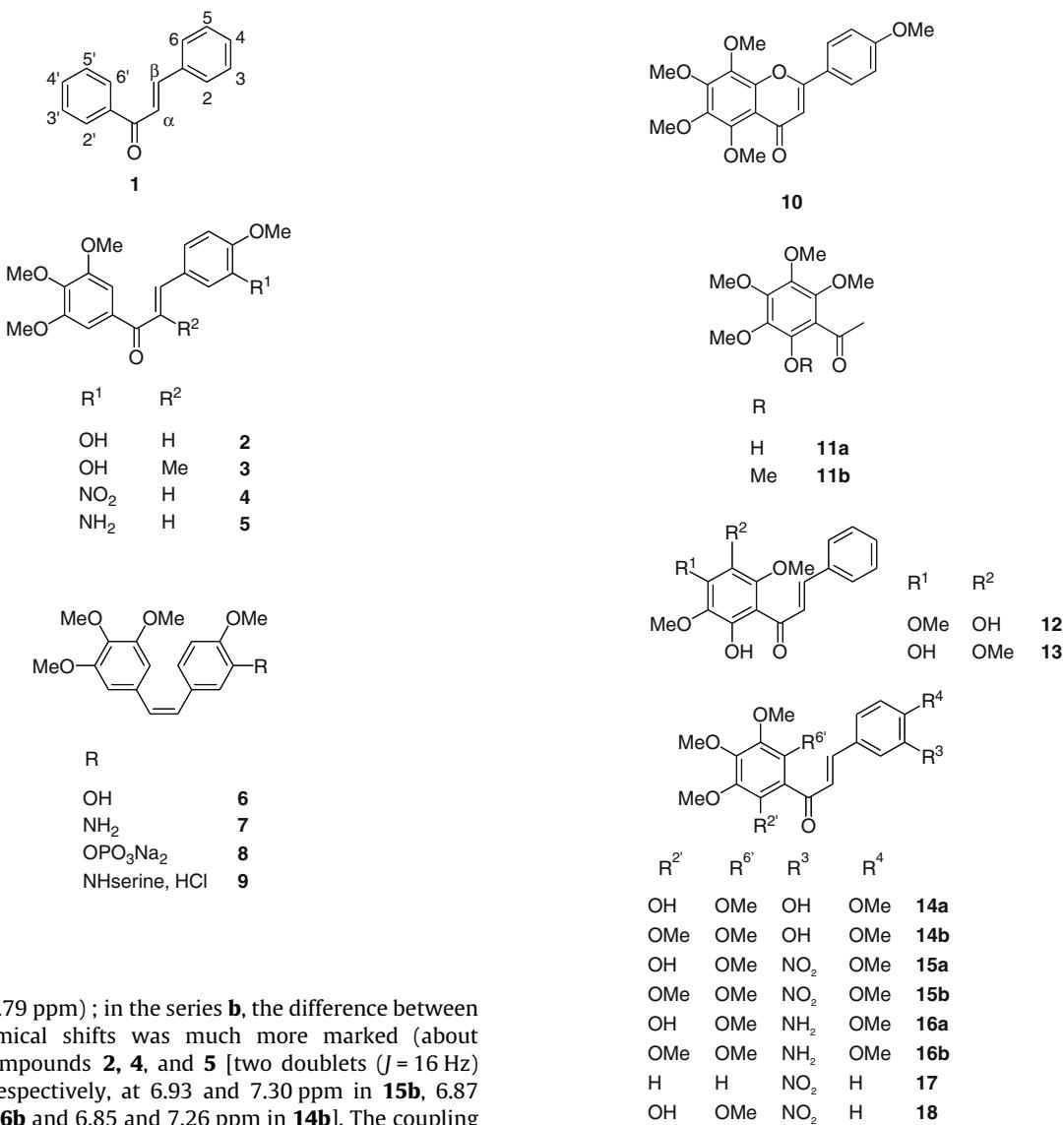
Antileishmanial drugs

ABSTRACT

A series of chalcones polyoxygenated on the ring A (with pentamethoxy or 2'-hydroxy-3',4',5',6'-tetramethoxy substitution patterns) was synthesized from tangeretin, a natural *Citrus* flavonoid. These chalcones were evaluated for their antiproliferative, activation of apoptosis, inhibition of tubulin assembly and antileishmanial activities. Comparison with the reference analogous 3',4',5'-trimethoxylated chalcones showed that such peroxygenated substitution patterns on the ring A were less beneficial to these activities.

© 2008 Elsevier Ltd. All rights reserved.

Chalcones are natural or synthetic compounds bearing the 1,3-diphenylprop-2-en-1-one **1** framework, that have displayed a wide pharmacological spectrum including, among others, cytotoxic, antitumour, antiviral, and antiprotozoal activities.¹ Many studies of chalcones related to cancer have demonstrated the positive influence of a polymethoxylated ring A on cytotoxicity, though the optimal substitution pattern remains to be defined.^{2,3} For instance, a 3',4',5'-trimethoxyphenyl ring A is present in the strongly cytotoxic chalcones **2**, **3**, and **5**, that interfere with the mitotic phase of the cell cycle.^{4–7} The biological profile of **2**, **3**, and **5** can be easily related to the structural analogy of these chalcones with combretastatin A4 **6** and its amino analog **7**, two powerful inhibitors of tubulin assembly now under clinical investigation as their respective prodrugs **8** and **9**.⁸

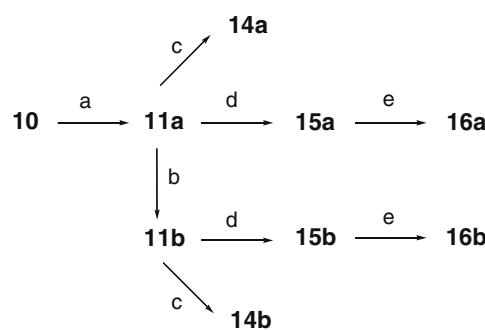

More recently, it was shown that dimethoxylation or trimethoxylation at 2',4',6'-carbons were highly beneficial to cell cycle arrest at G₂/M, while hydroxylation at 2' was generally detrimental⁹ (this last observation was in contrast with previous results showing high cytotoxicity of 2'-hydroxylated chalcones against Jurkat and U 937 cancer cells¹⁰). So a clear correlation between the polymethoxylation pattern of chalcones on the ring A and their cytotoxicity seems difficult to establish. Starting from tangeretin **10** we used this natural polymethoxylated flavone isolated from *Citrus* for a straightforward access to chalcones peroxygenated on the ring A through the easily available acetophenones **11a** and **11b**. Until now, only two of such chalcones, pedicin **12**, and isodidymo-

carpin **13**, have been studied with regard to cytotoxicity that proved to be weak [(**12**: IC₅₀ (KB cells) 21.2 μM; IC₅₀ (Inhibition of tubulin assembly) 300 μM;¹¹ Compound **13**: IC₅₀ (P-388 cells) 11.1 μM¹²]. As chalcones **12** and **13** are unsubstituted on the ring B, we undertook synthesis and cytotoxicity evaluation of chalcones **14a** and **14b**, and **16a** and **16b** bearing, respectively, on the ring B the substitution pattern of reference antimitotic chalcones **2** and **5**.

Chemistry: Synthesis of these new chalcones was achieved from tangeretin **10** in two, three, or four steps according to scheme 1: (a) basic degradation of **10** into acetophenone **11a**;¹³ (b) methylation of **11a** to the pentamethoxyacetophenone **11b**; (c) Claisen–Schmidt condensation of **11a** or **11b** with isovanillin in a mixture MeOH–aqueous KOH giving **14a** and **14b** respectively; (d) same Claisen–Schmidt condensation of **11a** or **11b** but with 3-nitro-4-methoxybenzaldehyde leading to **15a** and **15b**, respectively;¹⁴ (e) reduction of nitrochalcones **15a** or **15b** with SnCl₂ providing the aminochalcones **16a** or **16b**. Reference 3',4',5'-trimethoxylated chalcones **2**, **4**, and **5** were prepared in the same way from 3',4',5'-trimethoxyacetophenone. Lastly, a Claisen–Schmidt reaction between 3-nitrobenzaldehyde and 3',4',5'-trimethoxyacetophenone or acetophenone **11a** led to compounds **17**¹³ or **18**, the 4-demethoxylated analogs of 3-nitrochalcones **4** and **15a** (vide infra **Biology**).

From a spectral point of view, a striking difference between series **a** (2'-OH) and **b** (2'-OMe) could be noted in the ¹H NMR spectra: in the series **a**, signals of both olefinic protons were deshielded with chemical shifts for H_α and H_β very near [2 doublets (*J* = 16 Hz) at δ 7.75 and 7.85 ppm in **15a**; 2 doublets (*J* = 16 Hz) at δ 7.77 and 7.78 ppm in **16a**], or identical in **14a** (one singlet of

* Corresponding author. Tel.: +33 146835593; fax: +33 146835399.
E-mail address: guy.lewin@u-psud.fr (G. Lewin).



two protons at δ 7.79 ppm); in the series **b**, the difference between H α and H β chemical shifts was much more marked (about 0.4 ppm) as in compounds **2**, **4**, and **5** [two doublets (J = 16 Hz) for H α and H β , respectively, at 6.93 and 7.30 ppm in **15b**, 6.87 and 7.26 ppm in **16b** and 6.85 and 7.26 ppm in **14b**]. The coupling constant of 16 Hz observed in all the spectra (except **14a**) indicates the formation of only the expected *E* isomers. The strong variation of the olefinic signals between series **a** and **b** correlates certainly with a marked difference of conformations, that is related to the presence in the series **a** of an intramolecular hydrogen bonding between the 2'-hydroxyl proton and carbonyl oxygen.

Biology: The antiproliferative effect of chalcones was assayed on KB human buccal carcinoma cells and the activation of apoptosis with DEVD-AMC as substrate in HL60 human leukemia cells. Inhibition of tubulin assembly (ITA) was determined according to Zavala and Guenard's method.¹⁵ Compounds were tested at 0.1 mg/ml ($\approx 2 \times 10^{-4}$ M) and estimated inactive when they decreased by less than 30% the maximum assembly rate of tubulin in the absence of drug. The IC₅₀ was calculated only for the most active compounds and expressed in relation to deoxypodophyllotoxin (DPPT) in terms of the IC₅₀/IC₅₀ DPPT ratio. As depicted in Table 1, all the chalcones polyoxygenated on the ring A displayed a weak capacity to inhibit cell proliferation (still weaker for compounds **14b**–**16b** of the series **b**). This was in contrast to the strong activity observed with the 3',4',5'-trimethoxylated chalcones **2** and **5**. The measured ITA of the four most active chalcones **2**, **5** and **14a**, **16a** was in good correlation with the cell growth inhibition and matched the activation of apoptosis: **2** and **5** were potent activators (100 nM) compared to **14a** and **16a** (10 μ M) while **15a** was inactive. Lastly, it was noticed that compounds having the

intramolecular bond between the 2'-hydroxyl and carbonyl function (**14a** and **16a**) exhibit significantly higher ITA than those which do not have this bond (**14b** and **16b**).

In other respects, a recent article reporting some highly selective antileishmanial 3-nitrochalcones led us to evaluate antileish-

Scheme 1. Reagents and conditions: (a) EtOH–40% aq KOH, reflux, 5 h, 56%; (b) iodomethane, K₂CO₃, DMF, rt, 1 h, quantitative yield; (c) MeOH–50% aq KOH 1:1, isovanillin, rt, 15 h, 31% (**14a**), 64% (**14b**); (d) MeOH–50% aq KOH 10:1, 3-nitro-4-methoxybenzaldehyde, rt, 15 h, 60% (**15a**), 50% (**15b**); (e) SnCl₂, MeOH, 60 °C, 2 h, 74% (**16a**), 34% (**16b**).

Table 1

Antiproliferative, proapoptotic, antitubulin, and antileishmanial activities of synthesized chalcones

Compound	Cytotoxicity on KB cells ^a IC ₅₀ (μM)	Activation of apoptosis in HL60 ^b	ITA activity IC ₅₀ (μM)	Antileishmanial activity on <i>L. donovani</i> promastigotes ^f IC ₅₀ (μM)	Antileishmanial activity on <i>L. amazonensis</i> amastigotes ^g IC ₅₀ (μM)
2	100% IC ₅₀ = 0.017	100 nM: 3.6×	IC ₅₀ = 4.3 1.3 ^c	nd	nd
4	44%		nd ^d	IC ₅₀ = 2.8	Inactive ^h
5	100% IC ₅₀ = 0.031	100 nM: 3.6×	IC ₅₀ = 3.7 1.0 ^c	nd	nd
14a	49%	10 μM: 3.2×	IC ₅₀ = 13 3.8 ^c	IC ₅₀ = 25	Inactive ^h
14b	22%		Inactive ^e	IC ₅₀ = 20	nd
15a	43%	10 μM: 1.2×	Inactive ^e	IC ₅₀ = 5.3	Inactive ^h
15b	19%		Inactive ^e	nd	nd
16a	40%	10 μM: 2.9×	IC ₅₀ = 14 4.1 ^c	IC ₅₀ = 44	Inactive ^h
16b	29%		Inactive ^e	nd	nd
17	29%		nd	IC ₅₀ = 0.4	IC ₅₀ = 26 IS ⁱ = 2.8
18	31%		nd	IC ₅₀ = 4.4	IC ₅₀ = 26 IS = 2.5

^a As measured by the MTS assay after 72 h incubation of cells with drug; results are expressed as the percentage of inhibition of cell growth with 10 to 6 M chalcone concentration; IC₅₀ was calculated only for the two most active compounds.

^b Activation of caspases 3/7 activity: optimal concentration of compound and fold activation.

^c IC₅₀ chalcone/IC₅₀ deoxypodophyllotoxin.

^d Not determined.

^e Estimated inactive when decreasing by less than 30% the maximum assembly rate of tubulin without drug.

^f As measured by the MTT assay after 72 h incubation of parasite with the drug.

^g As measured after 30 h incubation of infected macrophages with the drug.

^h Estimated inactive when amastigotes are still lodged within parasitophore vacuole, inside macrophages, as compared to DMSO control.

ⁱ Index of selectivity defined by the ratio IC₅₀ murine macrophages/IC₅₀ amastigotes.

manial activity of the intermediate nitrochalcones **4** and **15a**.¹⁶ As the same letter displayed also the detrimental influence of almost all substitutions at C-4 on this activity, we decided to compare **4** and **15a** to their 4-unsubstituted analogs **17** and **18**. The antileishmanial activity (Table 1) was determined in vitro against promastigotes of *Leishmania donovani* strain LV9 (MHOM/ET/67/HU3) clone which were grown as described previously,¹⁷ and against intracellular amastigotes of *Leishmania amazonensis* strain LV9 (MPROB/BR/1972/M1841) which were isolated from lesions and purified as described earlier.¹⁸ Cytotoxicity against murine macrophages allowed evaluation of the compound selectivity (Index of selectivity IS = IC₅₀ macrophages/IC₅₀ amastigotes). The evaluation on promastigotes of compounds **14a–16a** confirmed the positive effect of a nitro group at C-3 since **15a** is much more active than **14a** and **16a**, but comparison **15a** vs **4** was slightly in favor of **4**. Removing the methoxyl group at C-4 increased the antipromastigotes activity within the 3',4',5'-trimethoxylated series (**17** vs **4**), but not within the series **a** (**18** vs **15a**). In compounds **17** and **18** the lack of substitution at C-4 had a significant impact on efficacy against amastigotes. Only these two compounds lacking substitution at C-4 showed any efficacy in this regard.

In conclusion, our study showed that the peroxygenated substitution patterns of the ring A present in the series **a** and **b** were less beneficial to antiproliferative, activation of apoptosis, antimitotic, and antileishmanial activities than the more classical and available 3',4',5'-trimethoxy substitution. However, this SAR was deduced from only few examples of chalcones, and needs to be generalized to a larger series bearing other substitution patterns on the ring B.

Acknowledgments

E. Prina from Pasteur Institute (Unité d'Immunologie et Parasitisme Intracellulaire) is acknowledged for its help in amastigotes toxicity evaluation, as well as P.M. Loiseau from Université Paris-

Sud 11 (Laboratoire de Pharmacognosie, groupe de Chimiothérapie Antiparistaire). Phytosynthèse is greatly thanked for J. Desrivot financial support.

References and notes

- Dimmock, J. R.; Elias, D. W.; Beazely, M. A.; Kandepu, N. M. *Curr. Med. Chem.* **1999**, *6*, 1125.
- Go, M. L.; Wu, X.; Liu, X. L. *Curr. Med. Chem.* **2005**, *12*, 483.
- Edwards, M. L.; Stemmerick, D. M.; Sunkara, P. S. *J. Med. Chem.* **1990**, *33*, 1948.
- Ducki, S.; Forrest, R.; Hadfield, J. A.; Kendall, A.; Lawrence, N. J.; McGown, A. T.; Rennison, D. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 1051.
- Lawrence, N. J.; Patterson, R. P.; Ooi, L. L.; Cook, D.; Ducki, S. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 5844.
- Pati, H. N.; Holt, H. L., Jr.; LeBlanc, R.; Dickson, J.; Stewart, M.; Brown, T.; Moses, L. *Med. Chem. Res.* **2005**, *14*, 19.
- LeBlanc, R.; Dickson, J.; Brown, T.; Stewart, M.; Pati, H. N.; VanDerveer, D.; Arman, H.; Harris, J.; Pennington, W.; Holt, H. L., Jr.; Lee, M. *Bioorg. Med. Chem.* **2005**, *13*, 6025.
- Lippert, J. W., III *Bioorg. Med. Chem.* **2007**, *15*, 605.
- Boumendjel, A.; Boccard, J.; Carrupt, P.-A.; Nicolle, E.; Blanc, M.; Geze, A.; Choisnard, L.; Wouessidjewe, D.; Matera, E.-L.; Dumontet, C. *J. Med. Chem.* **2008**, *51*, 2307.
- Rao, Y. K.; Fang, S.-H.; Tzeng, Y.-M. *Bioorg. Med. Chem.* **2004**, *12*, 2679.
- Alias, Y.; Awang, K.; Hadi, H. A.; Thoison, O.; Sévenet, T.; Pa, M. *J. Nat. Prod.* **1995**, *58*, 1160.
- Usman, H.; Hakim, E. H.; Harlim, T.; Jalaluddin, M. N.; Syah, Y. M.; Achmad, S. A.; Takayama, H. Z. *Naturforsch. C* **2006**, *61*, 184.
- Burnham, W. S.; Sidwell, R. W.; Tolman, R. L.; Stout, M. G. *J. Med. Chem.* **1972**, *15*, 1075.
- When the reaction with 3-nitro-4-methoxybenzaldehyde was performed in a mixture EtOH-aqueous KOH (classical conditions), the reaction compounds were a mixture of **15a** and its 4-OEt analog resulting from a SNAr mechanism at C-4.
- Zavala, F.; Guénard, D.; Robin, J.-P.; Brown, E. *J. Med. Chem.* **1980**, *23*, 546.
- Boeck, P.; Bandeira Falcao, C. A.; Leal, P. C.; Yunes, R. A.; Filho, V. C.; Torres-Santos, E. C.; Rossi-Bergmann, B. *Bioorg. Med. Chem.* **2006**, *14*, 1538.
- Desrivot, J.; Waikedre, J.; Cabalion, P.; Herrenknecht, C.; Bories, C.; Hocquemiller, R.; Fournet, A. *J. Ethnopharmacol.* **2007**, *112*, 7.
- Valderrama, J. A.; Zamorano, C.; Florencia Gonzalez, M.; Prina, E.; Fournet, A. *Bioorg. Med. Chem.* **2005**, *13*, 4153.